Recurrent Polynomial Network for Dialogue State Tracking

14 Jul 2015  ·  Kai Sun, Qizhe Xie, Kai Yu ·

Dialogue state tracking (DST) is a process to estimate the distribution of the dialogue states as a dialogue progresses. Recent studies on constrained Markov Bayesian polynomial (CMBP) framework take the first step towards bridging the gap between rule-based and statistical approaches for DST. In this paper, the gap is further bridged by a novel framework -- recurrent polynomial network (RPN). RPN's unique structure enables the framework to have all the advantages of CMBP including efficiency, portability and interpretability. Additionally, RPN achieves more properties of statistical approaches than CMBP. RPN was evaluated on the data corpora of the second and the third Dialog State Tracking Challenge (DSTC-2/3). Experiments showed that RPN can significantly outperform both traditional rule-based approaches and statistical approaches with similar feature set. Compared with the state-of-the-art statistical DST approaches with a lot richer features, RPN is also competitive.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.