Recursive Neural Networks Can Learn Logical Semantics

WS 2015 Samuel R. BowmanChristopher PottsChristopher D. Manning

Tree-structured recursive neural networks (TreeRNNs) for sentence meaning have been successful for many applications, but it remains an open question whether the fixed-length representations that they learn can support tasks as demanding as logical deduction. We pursue this question by evaluating whether two such models---plain TreeRNNs and tree-structured neural tensor networks (TreeRNTNs)---can correctly learn to identify logical relationships such as entailment and contradiction using these representations... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet