Recursive Subtree Composition in LSTM-Based Dependency Parsing

The need for tree structure modelling on top of sequence modelling is an open issue in neural dependency parsing. We investigate the impact of adding a tree layer on top of a sequential model by recursively composing subtree representations (composition) in a transition-based parser that uses features extracted by a BiLSTM. Composition seems superfluous with such a model, suggesting that BiLSTMs capture information about subtrees. We perform model ablations to tease out the conditions under which composition helps. When ablating the backward LSTM, performance drops and composition does not recover much of the gap. When ablating the forward LSTM, performance drops less dramatically and composition recovers a substantial part of the gap, indicating that a forward LSTM and composition capture similar information. We take the backward LSTM to be related to lookahead features and the forward LSTM to the rich history-based features both crucial for transition-based parsers. To capture history-based information, composition is better than a forward LSTM on its own, but it is even better to have a forward LSTM as part of a BiLSTM. We correlate results with language properties, showing that the improved lookahead of a backward LSTM is especially important for head-final languages.

PDF Abstract NAACL 2019 PDF NAACL 2019 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.