Reducing the Vision and Language Bias for Temporal Sentence Grounding

27 Jul 2022  ·  Daizong Liu, Xiaoye Qu, Wei Hu ·

Temporal sentence grounding (TSG) is an important yet challenging task in multimedia information retrieval. Although previous TSG methods have achieved decent performance, they tend to capture the selection biases of frequently appeared video-query pairs in the dataset rather than present robust multimodal reasoning abilities, especially for the rarely appeared pairs. In this paper, we study the above issue of selection biases and accordingly propose a Debiasing-TSG (D-TSG) model to filter and remove the negative biases in both vision and language modalities for enhancing the model generalization ability. Specifically, we propose to alleviate the issue from two perspectives: 1) Feature distillation. We built a multi-modal debiasing branch to firstly capture the vision and language biases, and then apply a bias identification module to explicitly recognize the true negative biases and remove them from the benign multi-modal representations. 2) Contrastive sample generation. We construct two types of negative samples to enforce the model to accurately learn the aligned multi-modal semantics and make complete semantic reasoning. We apply the proposed model to both commonly and rarely appeared TSG cases, and demonstrate its effectiveness by achieving the state-of-the-art performance on three benchmark datasets (ActivityNet Caption, TACoS, and Charades-STA).

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here