Reduction of the Number of Variables in Parametric Constrained Least-Squares Problems

18 Dec 2020  ·  Alberto Bemporad, Gionata Cimini ·

For linearly constrained least-squares problems that depend on a vector of parameters, this paper proposes techniques for reducing the number of involved optimization variables. After first eliminating equality constraints in a numerically robust way by QR factorization, we propose a technique based on singular value decomposition (SVD) and unsupervised learning, that we call $K$-SVD, and neural classifiers to automatically partition the set of parameter vectors in $K$ nonlinear regions in which the original problem is approximated by using a smaller set of variables. For the special case of parametric constrained least-squares problems that arise from model predictive control (MPC) formulations, we propose a novel and very efficient QR factorization method for equality constraint elimination. Together with SVD or $K$-SVD, the method provides a numerically robust alternative to standard condensing and move blocking, and to other complexity reduction methods for MPC based on basis functions. We show the good performance of the proposed techniques in numerical tests and in a linearized MPC problem of a nonlinear benchmark process.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here