Region-Aware Network: Model Human's Top-Down Visual Perception Mechanism for Crowd Counting

23 Jun 2021  ·  Yuehai Chen, Jing Yang, Dong Zhang, Kun Zhang, Badong Chen, Shaoyi Du ·

Background noise and scale variation are common problems that have been long recognized in crowd counting. Humans glance at a crowd image and instantly know the approximate number of human and where they are through attention the crowd regions and the congestion degree of crowd regions with a global receptive field. Hence, in this paper, we propose a novel feedback network with Region-Aware block called RANet by modeling humans Top-Down visual perception mechanism. Firstly, we introduce a feedback architecture to generate priority maps that provide prior about candidate crowd regions in input images. The prior enables the RANet pay more attention to crowd regions. Then we design Region-Aware block that could adaptively encode the contextual information into input images through global receptive field. More specifically, we scan the whole input images and its priority maps in the form of column vector to obtain a relevance matrix estimating their similarity. The relevance matrix obtained would be utilized to build global relationships between pixels. Our method outperforms state-of-the-art crowd counting methods on several public datasets.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here