Adaptive Control and Regret Minimization in Linear Quadratic Gaussian (LQG) Setting

12 Mar 2020  ·  Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, Anima Anandkumar ·

We study the problem of adaptive control in partially observable linear quadratic Gaussian control systems, where the model dynamics are unknown a priori. We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty, to effectively minimize the overall control cost. We employ the predictor state evolution representation of the system dynamics and deploy a recently proposed closed-loop system identification method, estimation, and confidence bound construction. LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model for further exploration and exploitation. We provide stability guarantees for LqgOpt and prove the regret upper bound of $\tilde{\mathcal{O}}(\sqrt{T})$ for adaptive control of linear quadratic Gaussian (LQG) systems, where $T$ is the time horizon of the problem.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here