Learning Decentralized Linear Quadratic Regulator with $\sqrt{T}$ Regret

17 Oct 2022  ·  Lintao Ye, Ming Chi, Ruiquan Liao, Vijay Gupta ·

We propose an online learning algorithm that adaptively designs a decentralized linear quadratic regulator when the system model is unknown a priori and new data samples from a single system trajectory become progressively available. The algorithm uses a disturbance-feedback representation of state-feedback controllers coupled with online convex optimization with memory and delayed feedback. Under the assumption that the system is stable or given a known stabilizing controller, we show that our controller enjoys an expected regret that scales as $\sqrt{T}$ with the time horizon $T$ for the case of partially nested information pattern. For more general information patterns, the optimal controller is unknown even if the system model is known. In this case, the regret of our controller is shown with respect to a linear sub-optimal controller. We validate our theoretical findings using numerical experiments.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here