Combinatorial Bandits with Relative Feedback

We consider combinatorial online learning with subset choices when only relative feedback information from subsets is available, instead of bandit or semi-bandit feedback which is absolute. Specifically, we study two regret minimisation problems over subsets of a finite ground set $[n]$, with subset-wise relative preference information feedback according to the Multinomial logit choice model... (read more)

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet