Reinforcement Learning Algorithm Selection

ICLR 2018  ·  Romain Laroche, Raphael Feraud ·

This paper formalises the problem of online algorithm selection in the context of Reinforcement Learning. The setup is as follows: given an episodic task and a finite number of off-policy RL algorithms, a meta-algorithm has to decide which RL algorithm is in control during the next episode so as to maximize the expected return. The article presents a novel meta-algorithm, called Epochal Stochastic Bandit Algorithm Selection (ESBAS). Its principle is to freeze the policy updates at each epoch, and to leave a rebooted stochastic bandit in charge of the algorithm selection. Under some assumptions, a thorough theoretical analysis demonstrates its near-optimality considering the structural sampling budget limitations. ESBAS is first empirically evaluated on a dialogue task where it is shown to outperform each individual algorithm in most configurations. ESBAS is then adapted to a true online setting where algorithms update their policies after each transition, which we call SSBAS. SSBAS is evaluated on a fruit collection task where it is shown to adapt the stepsize parameter more efficiently than the classical hyperbolic decay, and on an Atari game, where it improves the performance by a wide margin.

PDF Abstract ICLR 2018 PDF ICLR 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here