Reinforcement Learning for Picking Cluttered General Objects with Dense Object Descriptors

20 Apr 2023  ·  Hoang-Giang Cao, Weihao Zeng, I-Chen Wu ·

Picking cluttered general objects is a challenging task due to the complex geometries and various stacking configurations. Many prior works utilize pose estimation for picking, but pose estimation is difficult on cluttered objects. In this paper, we propose Cluttered Objects Descriptors (CODs), a dense cluttered objects descriptor that can represent rich object structures, and use the pre-trained CODs network along with its intermediate outputs to train a picking policy. Additionally, we train the policy with reinforcement learning, which enable the policy to learn picking without supervision. We conduct experiments to demonstrate that our CODs is able to consistently represent seen and unseen cluttered objects, which allowed for the picking policy to robustly pick cluttered general objects. The resulting policy can pick 96.69% of unseen objects in our experimental environment which is twice as cluttered as the training scenarios.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here