Reinforcement learning for port-Hamiltonian systems

21 Dec 2012  ·  Olivier Sprangers, Gabriel A. D. Lopes, Robert Babuska ·

Passivity-based control (PBC) for port-Hamiltonian systems provides an intuitive way of achieving stabilization by rendering a system passive with respect to a desired storage function. However, in most instances the control law is obtained without any performance considerations and it has to be calculated by solving a complex partial differential equation (PDE)... In order to address these issues we introduce a reinforcement learning approach into the energy-balancing passivity-based control (EB-PBC) method, which is a form of PBC in which the closed-loop energy is equal to the difference between the stored and supplied energies. We propose a technique to parameterize EB-PBC that preserves the systems's PDE matching conditions, does not require the specification of a global desired Hamiltonian, includes performance criteria, and is robust to extra non-linearities such as control input saturation. The parameters of the control law are found using actor-critic reinforcement learning, enabling learning near-optimal control policies satisfying a desired closed-loop energy landscape. The advantages are that near-optimal controllers can be generated using standard energy shaping techniques and that the solutions learned can be interpreted in terms of energy shaping and damping injection, which makes it possible to numerically assess stability using passivity theory. From the reinforcement learning perspective, our proposal allows for the class of port-Hamiltonian systems to be incorporated in the actor-critic framework, speeding up the learning thanks to the resulting parameterization of the policy. The method has been successfully applied to the pendulum swing-up problem in simulations and real-life experiments. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here