Reinforcement Learning of Control Policy for Linear Temporal Logic Specifications Using Limit-Deterministic Generalized Büchi Automata

14 Jan 2020  ·  Ryohei Oura, Ami Sakakibara, Toshimitsu Ushio ·

This letter proposes a novel reinforcement learning method for the synthesis of a control policy satisfying a control specification described by a linear temporal logic formula. We assume that the controlled system is modeled by a Markov decision process (MDP). We convert the specification to a limit-deterministic generalized B\"uchi automaton (LDGBA) with several accepting sets that accepts all infinite sequences satisfying the formula. The LDGBA is augmented so that it explicitly records the previous visits to accepting sets. We take a product of the augmented LDGBA and the MDP, based on which we define a reward function. The agent gets rewards whenever state transitions are in an accepting set that has not been visited for a certain number of steps. Consequently, sparsity of rewards is relaxed and optimal circulations among the accepting sets are learned. We show that the proposed method can learn an optimal policy when the discount factor is sufficiently close to one.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here