Reinforcement Learning State Estimation for High-Dimensional Nonlinear Systems

29 Sep 2021  ·  Saviz Mowlavi, Mouhacine Benosman, Saleh Nabi ·

In high-dimensional nonlinear systems such as fluid flows, the design of state estimators such as Kalman filters relies on a reduced-order model (ROM) of the dynamics. However, ROMs are prone to large errors, which negatively affects the performance of the estimator. Here, we introduce the reinforcement learning reduced-order estimator (RL-ROE), a ROM-based estimator in which the data assimilation feedback term is given by a nonlinear stochastic policy trained through reinforcement learning. The flexibility of the nonlinear policy enables the RL-ROE to compensate for errors of the ROM, while still taking advantage of the imperfect knowledge of the dynamics. We show that the trained RL-ROE is able to outperform a Kalman filter designed using the same ROM, and displays robust estimation performance with respect to different reference trajectories and initial state estimates.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here