Relative Density and Exact Recovery in Heterogeneous Stochastic Block Models

15 Dec 2015  ·  Amin Jalali, Qiyang Han, Ioana Dumitriu, Maryam Fazel ·

The Stochastic Block Model (SBM) is a widely used random graph model for networks with communities. Despite the recent burst of interest in recovering communities in the SBM from statistical and computational points of view, there are still gaps in understanding the fundamental information theoretic and computational limits of recovery. In this paper, we consider the SBM in its full generality, where there is no restriction on the number and sizes of communities or how they grow with the number of nodes, as well as on the connection probabilities inside or across communities. This generality allows us to move past the artifacts of homogenous SBM, and understand the right parameters (such as the relative densities of communities) that define the various recovery thresholds. We outline the implications of our generalizations via a set of illustrative examples. For instance, $\log n$ is considered to be the standard lower bound on the cluster size for exact recovery via convex methods, for homogenous SBM. We show that it is possible, in the right circumstances (when sizes are spread and the smaller the cluster, the denser), to recover very small clusters (up to $\sqrt{\log n}$ size), if there are just a few of them (at most polylogarithmic in $n$).

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here