Removal of Batch Effects using Generative Adversarial Networks

20 Jan 2019Uddeshya UpadhyayArjun Jain

Many biological data analysis processes like Cytometry or Next Generation Sequencing (NGS) produce massive amounts of data which needs to be processed in batches for down-stream analysis. Such datasets are prone to technical variations due to difference in handling the batches possibly at different times, by different experimenters or under other different conditions... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet