Reparameterization trick for discrete variables

4 Nov 2016  ·  Seiya Tokui, Issei Sato ·

Low-variance gradient estimation is crucial for learning directed graphical models parameterized by neural networks, where the reparameterization trick is widely used for those with continuous variables. While this technique gives low-variance gradient estimates, it has not been directly applicable to discrete variables, the sampling of which inherently requires discontinuous operations. We argue that the discontinuity can be bypassed by marginalizing out the variable of interest, which results in a new reparameterization trick for discrete variables. This reparameterization greatly reduces the variance, which is understood by regarding the method as an application of common random numbers to the estimation. The resulting estimator is theoretically guaranteed to have a variance not larger than that of the likelihood-ratio method with the optimal input-dependent baseline. We give empirical results for variational learning of sigmoid belief networks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here