Replay attack detection with complementary high-resolution information using end-to-end DNN for the ASVspoof 2019 Challenge

23 Apr 2019  ·  Jee-weon Jung, Hye-jin Shim, Hee-Soo Heo, Ha-Jin Yu ·

In this study, we concentrate on replacing the process of extracting hand-crafted acoustic feature with end-to-end DNN using complementary high-resolution spectrograms. As a result of advance in audio devices, typical characteristics of a replayed speech based on conventional knowledge alter or diminish in unknown replay configurations. Thus, it has become increasingly difficult to detect spoofed speech with a conventional knowledge-based approach. To detect unrevealed characteristics that reside in a replayed speech, we directly input spectrograms into an end-to-end DNN without knowledge-based intervention. Explorations dealt in this study that differentiates from existing spectrogram-based systems are twofold: complementary information and high-resolution. Spectrograms with different information are explored, and it is shown that additional information such as the phase information can be complementary. High-resolution spectrograms are employed with the assumption that the difference between a bona-fide and a replayed speech exists in the details. Additionally, to verify whether other features are complementary to spectrograms, we also examine raw waveform and an i-vector based system. Experiments conducted on the ASVspoof 2019 physical access challenge show promising results, where t-DCF and equal error rates are 0.0570 and 2.45 % for the evaluation set, respectively.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here