Representation Memorization for Fast Learning New Knowledge without Forgetting

28 Aug 2021  ·  Fei Mi, Tao Lin, Boi Faltings ·

The ability to quickly learn new knowledge (e.g. new classes or data distributions) is a big step towards human-level intelligence. In this paper, we consider scenarios that require learning new classes or data distributions quickly and incrementally over time, as it often occurs in real-world dynamic environments. We propose "Memory-based Hebbian Parameter Adaptation" (Hebb) to tackle the two major challenges (i.e., catastrophic forgetting and sample efficiency) towards this goal in a unified framework. To mitigate catastrophic forgetting, Hebb augments a regular neural classifier with a continuously updated memory module to store representations of previous data. To improve sample efficiency, we propose a parameter adaptation method based on the well-known Hebbian theory, which directly "wires" the output network's parameters with similar representations retrieved from the memory. We empirically verify the superior performance of Hebb through extensive experiments on a wide range of learning tasks (image classification, language model) and learning scenarios (continual, incremental, online). We demonstrate that Hebb effectively mitigates catastrophic forgetting, and it indeed learns new knowledge better and faster than the current state-of-the-art.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here