Representing Inferences and their Lexicalization

14 Dec 2021  ·  David McDonald, James Pustejovsky ·

We have recently begun a project to develop a more effective and efficient way to marshal inferences from background knowledge to facilitate deep natural language understanding. The meaning of a word is taken to be the entities, predications, presuppositions, and potential inferences that it adds to an ongoing situation. As words compose, the minimal model in the situation evolves to limit and direct inference. At this point we have developed our computational architecture and implemented it on real text. Our focus has been on proving the feasibility of our design.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here