Representing smooth functions as compositions of near-identity functions with implications for deep network optimization

We show that any smooth bi-Lipschitz $h$ can be represented exactly as a composition $h_m \circ ... \circ h_1$ of functions $h_1,...,h_m$ that are close to the identity in the sense that each $\left(h_i-\mathrm{Id}\right)$ is Lipschitz, and the Lipschitz constant decreases inversely with the number $m$ of functions composed. This implies that $h$ can be represented to any accuracy by a deep residual network whose nonlinear layers compute functions with a small Lipschitz constant... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper