Replicable Bandits

In this paper, we introduce the notion of replicable policies in the context of stochastic bandits, one of the canonical problems in interactive learning. A policy in the bandit environment is called replicable if it pulls, with high probability, the exact same sequence of arms in two different and independent executions (i.e., under independent reward realizations). We show that not only do replicable policies exist, but also they achieve almost the same optimal (non-replicable) regret bounds in terms of the time horizon. More specifically, in the stochastic multi-armed bandits setting, we develop a policy with an optimal problem-dependent regret bound whose dependence on the replicability parameter is also optimal. Similarly, for stochastic linear bandits (with finitely and infinitely many arms) we develop replicable policies that achieve the best-known problem-independent regret bounds with an optimal dependency on the replicability parameter. Our results show that even though randomization is crucial for the exploration-exploitation trade-off, an optimal balance can still be achieved while pulling the exact same arms in two different rounds of executions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here