Reproducing kernel Hilbert space based estimation of systems of ordinary differential equations

14 Nov 2013  ·  Javier González, Ivan Vujačić, Ernst Wit ·

Non-linear systems of differential equations have attracted the interest in fields like system biology, ecology or biochemistry, due to their flexibility and their ability to describe dynamical systems. Despite the importance of such models in many branches of science they have not been the focus of systematic statistical analysis until recently. In this work we propose a general approach to estimate the parameters of systems of differential equations measured with noise. Our methodology is based on the maximization of the penalized likelihood where the system of differential equations is used as a penalty. To do so, we use a Reproducing Kernel Hilbert Space approach that allows to formulate the estimation problem as an unconstrained numeric maximization problem easy to solve. The proposed method is tested with synthetically simulated data and it is used to estimate the unobserved transcription factor CdaR in Steptomyes coelicolor using gene expression data of the genes it regulates.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here