Paper

RepVGG: Making VGG-style ConvNets Great Again

We present a simple but powerful architecture of convolutional neural network, which has a VGG-like inference-time body composed of nothing but a stack of 3x3 convolution and ReLU, while the training-time model has a multi-branch topology. Such decoupling of the training-time and inference-time architecture is realized by a structural re-parameterization technique so that the model is named RepVGG... (read more)

Results in Papers With Code
(↓ scroll down to see all results)