Insect pest image detection and recognition based on bio-inspired methods

1 Oct 2019  ·  Loris Nanni, Gianluca Maguolo, Fabio Pancino ·

Insect pests recognition is necessary for crop protection in many areas of the world. In this paper we propose an automatic classifier based on the fusion between saliency methods and convolutional neural networks. Saliency methods are famous image processing algorithms that highlight the most relevant pixels of an image. In this paper, we use three different saliency methods as image preprocessing and create three different images for every saliency method. Hence, we create 3x3=9 new images for every original image to train different convolutional neural networks. We evaluate the performance of every preprocessing/network couple and we also evaluate the performance of their ensemble. We test our approach on both a small dataset and the large IP102 dataset. Our best ensembles reaches the state of the art accuracy on both the smaller dataset (92.43%) and the IP102 dataset (61.93%), approaching the performance of human experts on the smaller one. Besides, we share our MATLAB code at: https://github.com/LorisNanni/.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods