Research Re: search & Re-search

20 Mar 2024  ·  Aske Plaat ·

Search algorithms are often categorized by their node expansion strategy. One option is the depth-first strategy, a simple backtracking strategy that traverses the search space in the order in which successor nodes are generated. An alternative is the best-first strategy, which was designed to make it possible to use domain-specific heuristic information. By exploring promising parts of the search space first, best-first algorithms are usually more efficient than depth-first algorithms. In programs that play minimax games such as chess and checkers, the efficiency of the search is of crucial importance. Given the success of best-first algorithms in other domains, one would expect them to be used for minimax games too. However, all high-performance game-playing programs are based on a depth-first algorithm. This study takes a closer look at a depth-first algorithm, AB, and a best-first algorithm, SSS. The prevailing opinion on these algorithms is that SSS offers the potential for a more efficient search, but that its complicated formulation and exponential memory requirements render it impractical. The theoretical part of this work shows that there is a surprisingly straightforward link between the two algorithms -- for all practical purposes, SSS is a special case of AB. Subsequent empirical evidence proves the prevailing opinion on SSS to be wrong: it is not a complicated algorithm, it does not need too much memory, and it is also not more efficient than depth-first search.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here