Reservoir Computing for Macroeconomic Forecasting with Mixed Frequency Data

Macroeconomic forecasting has recently started embracing techniques that can deal with large-scale datasets and series with unequal release periods. MIxed-DAta Sampling (MIDAS) and Dynamic Factor Models (DFM) are the two main state-of-the-art approaches that allow modeling series with non-homogeneous frequencies. We introduce a new framework called the Multi-Frequency Echo State Network (MFESN) based on a relatively novel machine learning paradigm called reservoir computing. Echo State Networks (ESN) are recurrent neural networks formulated as nonlinear state-space systems with random state coefficients where only the observation map is subject to estimation. MFESNs are considerably more efficient than DFMs and allow for incorporating many series, as opposed to MIDAS models, which are prone to the curse of dimensionality. All methods are compared in extensive multistep forecasting exercises targeting US GDP growth. We find that our MFESN models achieve superior or comparable performance over MIDAS and DFMs at a much lower computational cost.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here