Paper

Resolving quantitative MRI model degeneracy with machine learning via training data distribution design

Quantitative MRI (qMRI) aims to map tissue properties non-invasively via models that relate these unknown quantities to measured MRI signals. Estimating these unknowns, which has traditionally required model fitting - an often iterative procedure, can now be done with one-shot machine learning (ML) approaches. Such parameter estimation may be complicated by intrinsic qMRI signal model degeneracy: different combinations of tissue properties produce the same signal. Despite their many advantages, it remains unclear whether ML approaches can resolve this issue. Growing empirical evidence appears to suggest ML approaches remain susceptible to model degeneracy. Here we demonstrate under the right circumstances ML can address this issue. Inspired by recent works on the impact of training data distributions on ML-based parameter estimation, we propose to resolve model degeneracy by designing training data distributions. We put forward a classification of model degeneracies and identify one particular kind of degeneracies amenable to the proposed attack. The strategy is demonstrated successfully using the Revised NODDI model with standard multi-shell diffusion MRI data as an exemplar. Our results illustrate the importance of training set design which has the potential to allow accurate estimation of tissue properties with ML.

Results in Papers With Code
(↓ scroll down to see all results)