Rethinking Full Connectivity in Recurrent Neural Networks

29 May 2019  ·  Matthijs Van Keirsbilck, Alexander Keller, Xiaodong Yang ·

Recurrent neural networks (RNNs) are omnipresent in sequence modeling tasks. Practical models usually consist of several layers of hundreds or thousands of neurons which are fully connected. This places a heavy computational and memory burden on hardware, restricting adoption in practical low-cost and low-power devices. Compared to fully convolutional models, the costly sequential operation of RNNs severely hinders performance on parallel hardware. This paper challenges the convention of full connectivity in RNNs. We study structurally sparse RNNs, showing that they are well suited for acceleration on parallel hardware, with a greatly reduced cost of the recurrent operations as well as orders of magnitude less recurrent weights. Extensive experiments on challenging tasks ranging from language modeling and speech recognition to video action recognition reveal that structurally sparse RNNs achieve competitive performance as compared to fully-connected networks. This allows for using large sparse RNNs for a wide range of real-world tasks that previously were too costly with fully connected networks.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here