Revised Progressive-Hedging-Algorithm Based Two-layer Solution Scheme for Bayesian Reinforcement Learning

21 Jun 2019  ·  Xin Huang, Duan Li, Daniel Zhuoyu Long ·

Stochastic control with both inherent random system noise and lack of knowledge on system parameters constitutes the core and fundamental topic in reinforcement learning (RL), especially under non-episodic situations where online learning is much more demanding. This challenge has been notably addressed in Bayesian RL recently where some approximation techniques have been developed to find suboptimal policies. While existing approaches mainly focus on approximating the value function, or on involving Thompson sampling, we propose a novel two-layer solution scheme in this paper to approximate the optimal policy directly, by combining the time-decomposition based dynamic programming (DP) at the lower layer and the scenario-decomposition based revised progressive hedging algorithm (PHA) at the upper layer, for a type of Bayesian RL problem. The key feature of our approach is to separate reducible system uncertainty from irreducible one at two different layers, thus decomposing and conquering. We demonstrate our solution framework more especially via the linear-quadratic-Gaussian problem with unknown gain, which, although seemingly simple, has been a notorious subject over more than half century in dual control.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here