Revisiting Gradient Episodic Memory for Continual Learning

ICLR 2020 Anonymous

Gradient Episodic Memory (GEM) is an effective model for continual learning, where each gradient update for the current task is formulated as a quadratic program problem with inequality constraints that alleviate catastrophic forgetting of previous tasks. However, practical use of GEM is impeded by several limitations: (1) the data examples stored in the episodic memory may not be representative of past tasks; (2) the inequality constraints appear to be rather restrictive for competing or conflicting tasks; (3) the inequality constraints can only avoid catastrophic forgetting but can not assure positive backward transfer... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet