Riemannian Stochastic Approximation for Minimizing Tame Nonsmooth Objective Functions

1 Feb 2023  ·  Johannes Aspman, Vyacheslav Kungurtsev, Reza Roohi Seraji ·

In many learning applications, the parameters in a model are structurally constrained in a way that can be modeled as them lying on a Riemannian manifold. Riemannian optimization, wherein procedures to enforce an iterative minimizing sequence to be constrained to the manifold, is used to train such models. At the same time, tame geometry has become a significant topological description of nonsmooth functions that appear in the landscapes of training neural networks and other important models with structural compositions of continuous nonlinear functions with nonsmooth maps. In this paper, we study the properties of such stratifiable functions on a manifold and the behavior of retracted stochastic gradient descent, with diminishing stepsizes, for minimizing such functions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here