RIS-Aided NLoS Monostatic Sensing under Mobility and Angle-Doppler Coupling

12 Jan 2024  ·  Mahmut Kemal Ercan, Musa Furkan Keskin, Sinan Gezici, Henk Wymeersch ·

We investigate the problem of reconfigurable intelligent surface (RIS)-aided monostatic sensing of a mobile target under line-of-sight (LoS) blockage considering a single antenna, full-duplex, and dual-functional radar-communications base station (BS). For the purpose of target detection and delay/Doppler/angle estimation, we derive a detector based on the generalized likelihood ratio test (GLRT), which entails a high-dimensional parameter search and leads to angle-Doppler coupling. To tackle these challenges, we propose a two-step algorithm for solving the GLRT detector/estimator in a low-complexity manner, accompanied by a RIS phase profile design tailored to circumvent the angle-Doppler coupling effect. Simulation results verify the effectiveness of the proposed algorithm, demonstrating its convergence to theoretical bounds and its superiority over state-of-the-art mobility-agnostic benchmarks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods