Risk and parameter convergence of logistic regression

20 Mar 2018  ·  Ziwei Ji, Matus Telgarsky ·

Gradient descent, when applied to the task of logistic regression, outputs iterates which are biased to follow a unique ray defined by the data. The direction of this ray is the maximum margin predictor of a maximal linearly separable subset of the data; the gradient descent iterates converge to this ray in direction at the rate $\mathcal{O}(\ln\ln t / \ln t)$... The ray does not pass through the origin in general, and its offset is the bounded global optimum of the risk over the remaining data; gradient descent recovers this offset at a rate $\mathcal{O}((\ln t)^2 / \sqrt{t})$. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here