Risk Perspective Exploration in Distributional Reinforcement Learning

28 Jun 2022  ·  Jihwan Oh, Joonkee Kim, Se-Young Yun ·

Distributional reinforcement learning demonstrates state-of-the-art performance in continuous and discrete control settings with the features of variance and risk, which can be used to explore. However, the exploration method employing the risk property is hard to find, although numerous exploration methods in Distributional RL employ the variance of return distribution per action. In this paper, we present risk scheduling approaches that explore risk levels and optimistic behaviors from a risk perspective. We demonstrate the performance enhancement of the DMIX algorithm using risk scheduling in a multi-agent setting with comprehensive experiments.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here