Risk-Sensitive Optimal Execution via a Conditional Value-at-Risk Objective

28 Jan 2022  ·  Seungki Min, Ciamac C. Moallemi, Costis Maglaras ·

We consider a liquidation problem in which a risk-averse trader tries to liquidate a fixed quantity of an asset in the presence of market impact and random price fluctuations. The trader encounters a trade-off between the transaction costs incurred due to market impact and the volatility risk of holding the position. Our formulation begins with a continuous-time and infinite horizon variation of the seminal model of Almgren and Chriss (2000), but we define as the objective the conditional value-at-risk (CVaR) of the implementation shortfall, and allow for dynamic (adaptive) trading strategies. In this setting, we are able to derive closed-form expressions for the optimal liquidation strategy and its value function. Our results yield a number of important practical insights. We are able to quantify the benefit of adaptive policies over optimized static policies. The relevant improvement depends only on the level of risk aversion: for moderate levels of risk aversion, the optimal dynamic policy outperforms the optimal static policy by 5-15%, and outperforms the optimal volume weighted average price (VWAP) policy by 15-25%. This improvement is achieved through dynamic policies that exhibit "aggressiveness-in-the-money": trading is accelerated when price movements are favorable, and is slowed when price movements are unfavorable. From a mathematical perspective, our analysis exploits the dual representation of CVaR to convert the problem to a continuous-time, zero-sum game. We leverage the idea of the state-space augmentation, and obtain a partial differential equation describing the optimal value function, which is separable and a special instance of the Emden-Fowler equation. This leads to a closed-form solution. As our problem is a special case of a linear-quadratic-Gaussian control problem with a CVaR objective, these results may be interesting in broader settings.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here