NodeSig: Binary Node Embeddings via Random Walk Diffusion

1 Oct 2020  ·  Abdulkadir Çelikkanat, Fragkiskos D. Malliaros, Apostolos N. Papadopoulos ·

Graph Representation Learning (GRL) has become a key paradigm in network analysis, with a plethora of interdisciplinary applications. As the scale of networks increases, most of the widely used learning-based graph representation models also face computational challenges. While there is a recent effort toward designing algorithms that solely deal with scalability issues, most of them behave poorly in terms of accuracy on downstream tasks. In this paper, we aim to study models that balance the trade-off between efficiency and accuracy. In particular, we propose NodeSig, a scalable model that computes binary node representations. NodeSig exploits random walk diffusion probabilities via stable random projections towards efficiently computing embeddings in the Hamming space. Our extensive experimental evaluation on various networks has demonstrated that the proposed model achieves a good balance between accuracy and efficiency compared to well-known baseline models on the node classification and link prediction tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods