Robust Data Detection for MIMO Systems with One-Bit ADCs: A Reinforcement Learning Approach

29 Mar 2019  ·  Yo-Seb Jeon, Namyoon Lee, H. Vincent Poor ·

The use of one-bit analog-to-digital converters (ADCs) at a receiver is a power-efficient solution for future wireless systems operating with a large signal bandwidth and/or a massive number of receive radio frequency chains. This solution, however, induces a high channel estimation error and therefore makes it difficult to perform the optimal data detection that requires perfect knowledge of likelihood functions at the receiver. In this paper, we propose a likelihood function learning method for multiple-input multiple-output (MIMO) systems with one-bit ADCs using a reinforcement learning approach. The key idea is to exploit input-output samples obtained from data detection, to compensate the mismatch in the likelihood function. The underlying difficulty of this idea is a label uncertainty in the samples caused by a data detection error. To resolve this problem, we define a Markov decision process (MDP) to maximize the accuracy of the likelihood function learned from the samples. We then develop a reinforcement learning algorithm that efficiently finds the optimal policy by approximating the transition function and the optimal state of the MDP. Simulation results demonstrate that the proposed method provides significant performance gains for the optimal data detection methods that suffer from the mismatch in the likelihood function.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here