Robust Deep Appearance Models

3 Jul 2016Kha Gia QuachChi Nhan DuongKhoa LuuTien D. Bui

This paper presents a novel Robust Deep Appearance Models to learn the non-linear correlation between shape and texture of face images. In this approach, two crucial components of face images, i.e. shape and texture, are represented by Deep Boltzmann Machines and Robust Deep Boltzmann Machines (RDBM), respectively... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet