Robust Estimators in High Dimensions without the Computational Intractability

21 Apr 2016  ·  Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, Alistair Stewart ·

We study high-dimensional distribution learning in an agnostic setting where an adversary is allowed to arbitrarily corrupt an $\varepsilon$-fraction of the samples. Such questions have a rich history spanning statistics, machine learning and theoretical computer science. Even in the most basic settings, the only known approaches are either computationally inefficient or lose dimension-dependent factors in their error guarantees. This raises the following question:Is high-dimensional agnostic distribution learning even possible, algorithmically? In this work, we obtain the first computationally efficient algorithms with dimension-independent error guarantees for agnostically learning several fundamental classes of high-dimensional distributions: (1) a single Gaussian, (2) a product distribution on the hypercube, (3) mixtures of two product distributions (under a natural balancedness condition), and (4) mixtures of spherical Gaussians. Our algorithms achieve error that is independent of the dimension, and in many cases scales nearly-linearly with the fraction of adversarially corrupted samples. Moreover, we develop a general recipe for detecting and correcting corruptions in high-dimensions, that may be applicable to many other problems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here