Robust-MBDL: A Robust Multi-branch Deep Learning Based Model for Remaining Useful Life Prediction and Operational Condition Identification of Rotating Machines

12 Sep 2023  ·  Khoa Tran, Hai-Canh Vu, Lam Pham, Nassim Boudaoud ·

In this paper, a Robust Multi-branch Deep learning-based system for remaining useful life (RUL) prediction and condition operations (CO) identification of rotating machines is proposed. In particular, the proposed system comprises main components: (1) an LSTM-Autoencoder to denoise the vibration data; (2) a feature extraction to generate time-domain, frequency-domain, and time-frequency based features from the denoised data; (3) a novel and robust multi-branch deep learning network architecture to exploit the multiple features. The performance of our proposed system was evaluated and compared to the state-of-the-art systems on two benchmark datasets of XJTU-SY and PRONOSTIA. The experimental results prove that our proposed system outperforms the state-of-the-art systems and presents potential for real-life applications on bearing machines.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here