Robust Multi-Agent Coordination from CaTL+ Specifications

4 Oct 2022  ·  Wenliang Liu, Kevin Leahy, Zachary Serlin, Calin Belta ·

We consider the problem of controlling a heterogeneous multi-agent system required to satisfy temporal logic requirements. Capability Temporal Logic (CaTL) was recently proposed to formalize such specifications for deploying a team of autonomous agents with different capabilities and cooperation requirements. In this paper, we extend CaTL to a new logic CaTL+, which is more expressive than CaTL and has semantics over a continuous workspace shared by all agents. We define two novel robustness metrics for CaTL+: the traditional robustness and the exponential robustness. The latter is sound, differentiable almost everywhere and eliminates masking, which is one of the main limitations of the traditional robustness metric. We formulate a control synthesis problem to maximize CaTL+ robustness and propose a two-step optimization method to solve this problem. Simulation results are included to illustrate the increased expressivity of CaTL+ and the efficacy of the proposed control synthesis approach.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here