Robust Nonparametric Regression with Metric-Space Valued Output

NeurIPS 2009 Matthias Hein

Motivated by recent developments in manifold-valued regression we propose a family of nonparametric kernel-smoothing estimators with metric-space valued output including a robust median type estimator and the classical Frechet mean. Depending on the choice of the output space and the chosen metric the estimator reduces to partially well-known procedures for multi-class classification, multivariate regression in Euclidean space, regression with manifold-valued output and even some cases of structured output learning... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet