Robust parameter estimation in dynamical systems via Statistical Learning with an application to epidemiological models

28 Jul 2020 Diego Marcondes

We propose a robust parameter estimation method for dynamical systems based on Statistical Learning techniques which aims to estimate a set of parameters that well fit the dynamics in order to obtain robust evidences about the qualitative behaviour of its trajectory. The method is quite general and flexible, since it dos not rely on any specific property of the dynamical system, and represents a mathematical formalisation of the procedure consisting of sampling and testing parameters, in which evolutions generated by candidate parameters are tested against observed data to assess goodness-of-fit... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet