Robust Self-Supervised Learning with Lie Groups

24 Oct 2022  ·  Mark Ibrahim, Diane Bouchacourt, Ari Morcos ·

Deep learning has led to remarkable advances in computer vision. Even so, today's best models are brittle when presented with variations that differ even slightly from those seen during training. Minor shifts in the pose, color, or illumination of an object can lead to catastrophic misclassifications. State-of-the art models struggle to understand how a set of variations can affect different objects. We propose a framework for instilling a notion of how objects vary in more realistic settings. Our approach applies the formalism of Lie groups to capture continuous transformations to improve models' robustness to distributional shifts. We apply our framework on top of state-of-the-art self-supervised learning (SSL) models, finding that explicitly modeling transformations with Lie groups leads to substantial performance gains of greater than 10% for MAE on both known instances seen in typical poses now presented in new poses, and on unknown instances in any pose. We also apply our approach to ImageNet, finding that the Lie operator improves performance by almost 4%. These results demonstrate the promise of learning transformations to improve model robustness.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods