Paper

Robust SfM with Little Image Overlap

Usual Structure-from-Motion (SfM) techniques require at least trifocal overlaps to calibrate cameras and reconstruct a scene. We consider here scenarios of reduced image sets with little overlap, possibly as low as two images at most seeing the same part of the scene. We propose a new method, based on line coplanarity hypotheses, for estimating the relative scale of two independent bifocal calibrations sharing a camera, without the need of any trifocal information or Manhattan-world assumption. We use it to compute SfM in a chain of up-to-scale relative motions. For accuracy, we however also make use of trifocal information for line and/or point features, when present, relaxing usual trifocal constraints. For robustness to wrong assumptions and mismatches, we embed all constraints in a parameterless RANSAC-like approach. Experiments show that we can calibrate datasets that previously could not, and that this wider applicability does not come at the cost of inaccuracy.

Results in Papers With Code
(↓ scroll down to see all results)