Robust Value Function Approximation Using Bilinear Programming

NeurIPS 2009  ·  Marek Petrik, Shlomo Zilberstein ·

Existing value function approximation methods have been successfully used in many applications, but they often lack useful a priori error bounds. We propose approximate bilinear programming, a new formulation of value function approximation that provides strong a priori guarantees. In particular, it provably finds an approximate value function that minimizes the Bellman residual. Solving a bilinear program optimally is NP hard, but this is unavoidable because the Bellman-residual minimization itself is NP hard. We, therefore, employ and analyze a common approximate algorithm for bilinear programs. The analysis shows that this algorithm offers a convergent generalization of approximate policy iteration. Finally, we demonstrate that the proposed approach can consistently minimize the Bellman residual on a simple benchmark problem.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here