Robustifying $\ell_\infty$ Adversarial Training to the Union of Perturbation Models

Classical adversarial training (AT) frameworks are designed to achieve high adversarial accuracy against a single attack type, typically $\ell_\infty$ norm-bounded perturbations. Recent extensions in AT have focused on defending against the union of multiple perturbations but this benefit is obtained at the expense of a significant (up to $10\times$) increase in training complexity over single-attack $\ell_\infty$ AT. In this work, we expand the capabilities of widely popular single-attack $\ell_\infty$ AT frameworks to provide robustness to the union of ($\ell_\infty, \ell_2, \ell_1$) perturbations while preserving their training efficiency. Our technique, referred to as Shaped Noise Augmented Processing (SNAP), exploits a well-established byproduct of single-attack AT frameworks -- the reduction in the curvature of the decision boundary of networks. SNAP prepends a given deep net with a shaped noise augmentation layer whose distribution is learned along with network parameters using any standard single-attack AT. As a result, SNAP enhances adversarial accuracy of ResNet-18 on CIFAR-10 against the union of ($\ell_\infty, \ell_2, \ell_1$) perturbations by 14%-to-20% for four state-of-the-art (SOTA) single-attack $\ell_\infty$ AT frameworks, and, for the first time, establishes a benchmark for ResNet-50 and ResNet-101 on ImageNet.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here