Robustly Learning a Gaussian: Getting Optimal Error, Efficiently

12 Apr 2017  ·  Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart ·

We study the fundamental problem of learning the parameters of a high-dimensional Gaussian in the presence of noise -- where an $\varepsilon$-fraction of our samples were chosen by an adversary. We give robust estimators that achieve estimation error $O(\varepsilon)$ in the total variation distance, which is optimal up to a universal constant that is independent of the dimension. In the case where just the mean is unknown, our robustness guarantee is optimal up to a factor of $\sqrt{2}$ and the running time is polynomial in $d$ and $1/\epsilon$. When both the mean and covariance are unknown, the running time is polynomial in $d$ and quasipolynomial in $1/\varepsilon$. Moreover all of our algorithms require only a polynomial number of samples. Our work shows that the same sorts of error guarantees that were established over fifty years ago in the one-dimensional setting can also be achieved by efficient algorithms in high-dimensional settings.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here