Robustness and risk-sensitivity in Markov decision processes

NeurIPS 2012  ·  Takayuki Osogami ·

We uncover relations between robust MDPs and risk-sensitive MDPs. The objective of a robust MDP is to minimize a function, such as the expectation of cumulative cost, for the worst case when the parameters have uncertainties. The objective of a risk-sensitive MDP is to minimize a risk measure of the cumulative cost when the parameters are known. We show that a risk-sensitive MDP of minimizing the expected exponential utility is equivalent to a robust MDP of minimizing the worst-case expectation with a penalty for the deviation of the uncertain parameters from their nominal values, which is measured with the Kullback-Leibler divergence. We also show that a risk-sensitive MDP of minimizing an iterated risk measure that is composed of certain coherent risk measures is equivalent to a robust MDP of minimizing the worst-case expectation when the possible deviations of uncertain parameters from their nominal values are characterized with a concave function.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here